
Kaspa Innovation Summit
Hong Kong, October 27th 2024

● Overview of Rust
Overview of the Rust programming language

● Building Modern Multi-platform SDKs in Rust
Overview of the Kaspa SDK

● Smart Contract Design in Kaspa L1
Overview of Kaspa as a transaction sequencer & zero knowledge proofer

● L2 Research & Prototyping
Overview of the Sparkle Project

Special thanks to the
Kaspa Ecosystem Foundation

Special thanks to

@hashdag, @starkbamse, @143672, @coderofstuff, @Someone234,
@Elichai2, @misutton, @tiram, @smartgoo, @OneBananaGirl,
@KaffinPX, @Ds/jwj, @matoo, @supertypo and many others.

Software Architect 1988 … present :/

Background & interests includes:

● Computer Graphics and Visual Effects
● 3d Graphics and Virtual Reality
● High-performance GPU processing (CG)
● Embedded & Mobile systems
● Content delivery systems
● Virtual Machines & Operating Systems
● Industrial automation
● Financial data processing
● Cryptocurrency technologies
● Smart Contract technologies
● Sharing knowledge and experience

Over 3 decades of C++ & software engineering...

About Myself
https://aspectron.org

@aspect

1990s 2000s

Using consumer gaming hardware.

30mm USD of advertising revenue can be lost in case of a
technical problem.

https://scalingbitcoin.org

https://bitcoinedge.org

I've seen things you people wouldn't believe…I've seen things you people wouldn't believe…

Advisor and Contributor to Kaspa Core

Legacy
● KDX (accessibility)
● Legacy TypeScript SDK

Rusty Kaspa
● Co-designed RPC infrastructure
● Consensus infrastructure testing
● Rusty Kaspa framework structure
● Rusty Kaspa Rust SDK + WASM32 SDK
● Core ecosystem support & coordination
● Kaspa NG (security)

Building Modern Multi-platform SDKs in Rust
Key Rust features and the Rusty Kaspa Framework SDK

Kaspa Innovation Summit
Hong Kong, October 27th 2024

A bit about the Rust
programming language

Rust Origins Rust began as a personal project in 2006 by Mozilla
Research employee Graydon Hoare, named after the
group of fungi that are "over-engineered for survival".

Mozilla began sponsoring the project in 2009, and
would employ a dozen engineers to work on it full time
over the next ten years.

Around 2010, work shifted from the initial compiler
written in OCaml to a self-hosting compiler based on
LLVM written in Rust. The new Rust compiler
successfully compiled itself in 2011.

Rust Origins Rust is a relatively young language and is a bit "late to
the game".

Kind of like Kaspa (in a grand scheme of things)…

Being late gives one advantages as one can learn from
mistakes of others and work on avoiding them.

Rust Origins
Writing safe concurrent code is a "rocket science".

Picture taken in the Mozilla San Francisco office.

What Rust offers
(from the project management standpoint)

● Software Reliability - no unexpected behavior.

● Long-term sustainability - ease of long-term codebase
management in large projects.

● Integrated documentation

● Ability to have the same codebase that targets different
environments via different build targets (or via bindings):
Native, WASM, Python, Dart, Swift, etc.

● Ability to bind to existing C-style APIs using FFI

Toolchain is focused on Compiler Guided Development

● Rustc teaches you
● cargo check & cargo clippy
● Rust Analyzer

Various IDE Extensions

In Visual Studio Code these include:

● Rust Analyzer
● Error Lens
● Even Better TOML
● Dependi

Autocomplete & AI (If you have geographical constraints, get a VPN)

● Tab9
● Github Copilot
● Cursor (w/Claude)
● Claude (by Anthropic is better than ChatGPT as of Q4 2024)

Rust Toolchain

Crate ecosystem

https://crates.io

Rust has an amazing crate ecosystem

It is a "Magic Wonderland" (as described by Michael
Sutton) of stable, reliable, well-documented solutions,
especially those focused on algorithmic processing.

● All sorts of networking (Axum HTTP benched to
handle 500k req/s)

● Cryptography & Encryption
● Bindings and interop
● High-efficiency algorithms (especially caching,

lock-free high-performance implementations
etc.)

● Bindings to existing popular C++ libraries

Huge growing ecosystem of contributors and builders.

Default “go to” for cryptocurrency & cryptography
projects.

Diving into Rust internals
Just some highlights that I find valuable.

Enums in Rust

• Multiple Variants: Enums allow a type to be one of several different variants, each potentially
holding different data.

• Strong Type Safety: Each variant can store different types of values, offering strong compile-time
checks.

• Flexible Data Representation: You can mix and match variants with or without data in a single
enum.

• Pattern Matching: Rust’s powerful pattern matching works seamlessly with enums, making it
easy to work with their variants.

• Clear and Readable Code: Enums provide a clear and concise way to represent state or data that
can take multiple forms.

Example

enum Message {
 Quit, // No data
 Move { x: i32, y: i32 }, // Struct-like data
 Write(String), // Tuple-like data
 ChangeColor(i32, i32, i32), // Tuple-like data
}
fn process_message(msg: Message) {
 match msg {
 Message::Quit => println!("Quit message"),
 Message::Move { x, y } => println!("Move to coordinates: ({}, {})",
x, y),
 Message::Write(text) => println!("Write message: {}", text),
 Message::ChangeColor(r, g, b) => println!("Change color to RGB({},
{}, {})", r, g, b),
 }
}

Enums

enum Message {
 Quit, // No data
 Move { x: i32, y: i32 }, // Struct-like data
 Write(String), // Tuple-like data
 ChangeColor(i32, i32, i32), // Tuple-like data
}
fn process_message(msg: Message) {
 match msg { missing match arm: `ChangeColor(_, _, _)` not covered
 Message::Quit => println!("Quit message"),
 Message::Move { x, y } => println!("Move to coordinates: ({}, {})", x, y),
 Message::Write(text) => println!("Write message: {}", text),
 }
}

error[E0004]: non-exhaustive patterns: `input::Message::ChangeColor(_, _, _)` not
covered
 --> consensus/client/src/input.rs:20:11
 |
20 | match msg {
 | ^^^ pattern `input::Message::ChangeColor(_, _, _)` not covered
 |
note: `input::Message` defined here
 --> consensus/client/src/input.rs:13:6
 |
13 | enum Message {
 | ^^^^^^^
...
17 | ChangeColor(i32, i32, i32), // Tuple-like data
 | ----------- not covered
 = note: the matched value is of type `input::Message`
help: ensure that all possible cases are being handled by adding a match arm with a
wildcard pattern or an explicit pattern as shown
 |
23 ~ Message::Write(text) => println!("Write message: {}", text),
24 ~ input::Message::ChangeColor(_, _, _) => todo!(),
 |

Pattern Matching

Conditional Compilation

#[cfg()]

(we call them gates)

• Conditional Compilation: The cfg attribute in Rust allows you to
conditionally include or exclude code based on compilation flags,
target architectures, operating systems, or custom configuration
options.

• Cross-Platform Compatibility: It enables writing platform-specific
code that is only compiled on certain operating systems (e.g.,
Windows, Linux, macOS).

• Custom Build Features: You can enable or disable features at
compile time using Cargo’s feature flags, providing flexibility in
building different versions of the same crate.

• Performance Optimization: Helps in optimizing builds by excluding
unnecessary code for specific platforms or configurations, leading to
faster compile times and smaller binaries.

Example:

#[cfg(target_os = "windows")]
fn windows_only_function() {
 // Windows-specific code here
}
#[cfg(feature = "my_feature")]
fn feature_specific_function() {
 // Code for when `my_feature` is enabled
}

Also important to note the cfg_if crate.

Borrow Checker
• Memory Safety Without Garbage Collection: Rust’s borrow checker ensures
memory safety by enforcing rules around references and lifetimes, preventing
common issues like dangling pointers, data races, or double frees, without
needing a garbage collector.

• Ownership Enforcement: The borrow checker enforces Rust’s ownership model,
where data can have either one mutable reference or any number of immutable
references at a time, preventing simultaneous modification and access to data,
reducing bugs.

• Compile-Time Error Detection: Instead of discovering memory issues at
runtime, the borrow checker catches them at compile time, reducing the
possibility of crashes or undefined behavior.

• Zero-Cost Abstraction: This safety is achieved without runtime overhead,
ensuring high performance while still guaranteeing memory correctness.

Example

fn borrow_example() {
 let mut x = 5;

 {
 let y = &x; // immutable borrow of `x`
 println!("{}", y); // OK, only reading `x`
 }

 let z = &mut x; // mutable borrow of `x`, possible only when no
other borrows exist
 *z += 1; // OK, modifying `x`
}

• Eliminates Null Reference Bugs: In Rust, there are no null pointers by default. Instead
of nullable pointers, Rust uses the Option<T> enum to represent values that can either be
Some(T) or None, eliminating null reference bugs (a common source of crashes in other
languages).

• Safer Error Handling: By using Option<T> and Result<T, E>, Rust enforces explicit
handling of missing values or potential errors, ensuring developers consciously deal with
“null-like” situations instead of causing runtime exceptions like null pointer
dereferencing.

• Compile-Time Safety: The Rust compiler enforces handling of Option<T> or Result<T,
E>, preventing accidental dereferencing of null-like values, catching potential issues at
compile time instead of runtime.

• More Predictable Code: Since null values are explicitly represented and handled, the
absence of null pointers in Rust leads to more predictable, reliable, and maintainable
codebases.

Example Using Option<T>

fn find_user(id: u32) -> Option<&str> {
 if id == 1 {
 Some("Alice")
 } else {
 None // Explicitly handles "null" case
 }
}
fn main() {
 let user = find_user(1);
 match user {
 Some(name) => println!("Found user: {}", name),
 None => println!("No user found"), // Explicitly handle "null" case
 }
}

Absence of "NULL"

Explicit Mutability
• Explicit Mutability Declaration: In Rust, variables are immutable by default, and
mutability must be explicitly declared using the mut keyword. This makes it clear
when a variable is intended to be changed, improving code readability and intent.

• Prevents Unintended Modifications: Since mutability is explicit, it prevents
accidental changes to variables that are meant to remain constant, reducing
bugs related to unintended state changes.

• Enhanced Code Safety: By enforcing clear mutability, Rust allows the compiler
to optimize code better and ensures that developers are more aware of when
data can be modified, reducing data races in concurrent programming.

• Immutable by Default: This approach aligns with functional programming
paradigms where immutability is encouraged, promoting safer and more
predictable code behavior.

Example

fn main() {
 let x = 5; // Immutable by default
 // x = 6; // Compile-time error: cannot assign to immutable variable
 let mut y = 10; // `mut` makes the variable mutable
 y = 20; // OK, mutable variable can be modified
 println!("y is now {}", y);
}

• Function Arguments: You can also mark function parameters as mutable if you
intend to modify the arguments, further promoting clarity in API design.

Strict Type System • Prevents Type Errors at Compile Time: Rust’s strict static typing
system ensures that all type mismatches are caught at compile time,
preventing many classes of runtime errors and improving overall
code correctness.

• Better Code Safety: With strict type enforcement, Rust prevents
unsafe operations such as passing the wrong type to a function or
misusing data, enhancing memory and type safety.

• No Implicit Type Conversions: Rust avoids implicit type
conversions (coercions) between types, such as between integers
and floating points, preventing unexpected behavior and increasing
clarity in how types are handled.

• Enhanced Readability and Maintainability: A strict typing system
makes code more predictable and readable by enforcing clear
contracts for function parameters and return types, making it easier
to reason about what a function does.

• Type Inference: Despite its strictness, Rust offers type inference,
meaning that the compiler can infer the type in many cases, reducing
verbosity while still maintaining safety.

• Generics: Rust allows for strict yet flexible typing using generics,
enabling code reuse while maintaining type safety.

Traits
Traits

• Define Shared Behavior: Traits are similar to interfaces in other languages. They define a set of
methods or behaviors that types can implement.

• Polymorphism: Traits allow for polymorphism by enabling functions to accept any type that
implements a particular trait, making your code more flexible.

• Trait Bounds: Functions can specify that they only accept types that implement certain traits,
enabling compile-time checks for correctness.

Example

trait Speak {
 fn speak(&self);
}
struct Dog;
impl Speak for Dog {
 fn speak(&self) { println!("Woof!"); }
}
struct Cat;
impl Speak for Cat {
 fn speak(&self) { println!("Meow!"); }
}
fn animal_speak<T: Speak>(animal: T) {
// The animal generic is restricted by trait
 animal.speak();
}
fn main() {
 let dog = Dog;
 let cat = Cat;
 animal_speak(dog); // Outputs: Woof!
 animal_speak(cat); // Outputs: Meow!
}

Explanation: The Speak trait defines a speak method. Both Dog and Cat structs implement this
trait, and the animal_speak function can accept any type that implements Speak.

async Rust

async Rust

• Concurrency without Threads: Async Rust allows for concurrent programming
without the overhead of creating multiple OS threads. Instead, it uses async tasks
that can be run on a single or limited number of threads.

• Non-blocking I/O: Asynchronous code allows I/O operations (such as network
requests) to be non-blocking, which means they can be suspended while waiting for
results, freeing up resources for other tasks.

• async and await Keywords: These keywords are used to define and run
asynchronous functions, allowing Rust to pause the execution of tasks and resume
them when the awaited operation completes.

• Executor Required: Rust’s async code does not automatically run in parallel; it
requires an executor (e.g., tokio or async-std) to poll and run tasks concurrently.

Benefits

• Highly Efficient Concurrency: Async Rust enables you to perform many I/O-bound
tasks concurrently without the cost of thread switching.

• Memory Efficiency: By using lightweight tasks instead of threads, async Rust
reduces memory overhead and improves performance in systems with high I/O
needs, like web servers and network clients.

Example

use async_std::task;
async fn fetch_data() -> String {
 // Simulate a non-blocking I/O operation

task::sleep(std::time::Duration::from_secs(2)).await;
 String::from("Data fetched")
}
#[async_std::main]
async fn main() {
 println!("Fetching data...");
 let result = fetch_data().await; // Await the async
function
 println!("{}", result); // Outputs: Data
fetched
}

async Rust async Rust is very important in the Browser (WASM32
browser) environment.

Non-blocking execution on fine-granular tasks means
no blocking on user input.

Special considerations:

`yield_executor()` implemented as
`requestAnimationFrame()`

This forcefully suspends async Rust executor
providing relief for Browser UI updates during
time-consuming tasks.

Channels
Channels

• Concurrency Communication: Channels provide a way for different threads to communicate by sending
messages between them.

• Thread-Safe: Rust channels are designed to be thread-safe, ensuring no data races occur when transferring
data between threads.

• Two Types: Rust provides bounded and unbounded channels for controlling how much data can be sent
before blocking occurs.

• Ownership Transfer: Channels allow moving data from one thread to another, ensuring that only one thread
owns the data at any given time.

Example

use async_std::task;
use async_std::channel;
#[async_std::main]
async fn main() {

 let (tx, rx) = channel::unbounded();

 // Spawn an asynchronous task
 task::spawn(async move {
 let val = String::from("Hello from async task!");
 tx.send(val).await.unwrap(); // Send value asynchronously
 });

 // Receive value asynchronously
 let received = rx.recv().await.unwrap();
 println!("Received: {}", received); // Outputs: Received: Hello from async task!
}

Concurrency Without Shared State: Channels enable communication without needing shared mutable state.

Rayon
Rayon

• Data Parallelism: Rayon allows for parallel iteration over collections (like arrays, vectors) with
minimal changes to your code.

• Ergonomic API: You can turn sequential iterators into parallel iterators with a simple method call
(.par_iter()), making the transition to parallelism easy.

• Safe Parallelism: Rayon ensures safe concurrency by leveraging Rust’s ownership and type
system, preventing data races and ensuring thread safety.

• Automatic Load Balancing: Rayon dynamically balances the workload across threads, ensuring
optimal usage of system resources.

Example

use rayon::prelude::*;
fn main() {
 let numbers: Vec<i32> = (1..1000).collect();

 // Parallel iteration using `.par_iter()`
 let sum: i32 = numbers.par_iter().sum();

 println!("Sum: {}", sum); // Sum is calculated in parallel
}

Key Features

• Parallel Iterators: Convert any iterator into a parallel iterator using .par_iter() or .par_iter_mut() for
mutable access.

• Parallel Processing: Operations like map, filter, reduce, and for_each can be parallelized easily
using Rayon.

• Parallel Sorting: Rayon also supports parallel sorting with .par_sort() and .par_sort_by() methods
for efficient multi-threaded sorting.

Declarative Macros Declarative Macros (macro_rules!)

• Pattern-Based Code Generation: Uses pattern matching to
generate repetitive or complex code at compile time.

• Zero Runtime Cost: Macros are expanded at compile time, so they
introduce no overhead during execution.

• Improved Code Reusability: Reduces code duplication by
abstracting common patterns.

• Flexible and Powerful: Can handle complex inputs and expand to
various Rust constructs.

Example

macro_rules! say_hello {
 () => {
 println!("Hello, world!");
 };
}
fn main() {
 say_hello!(); // Expands to `println!("Hello,
world!");`
}

Derive Macros

#[derive(Describe, Eq, PartialEq, Debug, Clone, Copy)]

#[caption = "Main menu"]

pub enum Main {

 /// Status and logs

 #[describe("Service status")]

 Status,

 /// Configure services

 #[describe("Configure")]

 Configure,

 /// Software updates

 #[describe("Updates")]

 Update,

 /// Uninstall services, delete data, etc.

 #[describe("Advanced")]

 Advanced,

 /// Exit the program

 Exit,

}

impl Main {

 pub fn caption() -> &'static str {

 "Main menu"

 }

 pub fn iter() -> impl Iterator<Item = &'static Self> {

 [Main::Status, Main::Configure, ...].iter()

...

 pub fn describe(&self) -> &'static str {

 match self {

 Main::Status => "Service status",

 Main::Configure => "Configure",

...

 pub fn rustdoc(&self) -> &'static str {

 match self {

 Main::Status => "Status and logs",

 Main::Configure => "Configure services",

...

Attribute Macros ● Similar to #[derive()] macros

● Allow modification of the underlying AST
(abstract syntax tree)

Example: #[wasm_bindgen]

● Detects underlying syntax.

● For structs, creates needed scaffolding,
implements getters.

● For impl blocks, creates bindings for each
function and provides automatic argument and
return value conversion.

● For type declarations wrapped in extern "C"
calling convention, creates corresponding
TypeScript types.

... and much much more.

Proc Macros in Rusty Kaspa RPC

impl RpcApi for KaspaRpcClient {

 build_wrpc_client_interface!(

 RpcApiOps,

 [

 Ping,

 AddPeer,

 GetBlock,

 GetBlockCount,

 GetBlockDagInfo,

 GetBlocks,

 GetHeaders,

 GetInfo,

 …

Xxx -> XxxRequest, XxxResponse, xxx_call + fn body

(Ident manipulation, snake case conversion)

impl RpcApi for KaspaRpcClient {

 async fn ping_call(&self, request : PingRequest) -> RpcResult<PingResponse> {

 let response: ClientResult<PingResponse> = self.inner.rpc.call(RpcApiOps::Ping, request).await;

 Ok(response.map_err(|e| e.to_string())?)

 }

 async fn add_peer_call(&self, request : AddPeerRequest) -> RpcResult<AddPeerResponse> {

 let response: ClientResult<AddPeerResponse> = self.inner.rpc.call(RpcApiOps::AddPeer, request).await;

 Ok(response.map_err(|e| e.to_string())?)

 }

 async fn get_block_call(&self, request : GetBlockRequest) -> RpcResult<GetBlockResponse> {

 let response: ClientResult<GetBlockResponse> = self.inner.rpc.call(RpcApiOps::GetBlock, request).await;

 Ok(response.map_err(|e| e.to_string())?)

 }

 async fn get_block_count(&self, request : GetBlockCountRequest) -> RpcResult<GetBlockCountResponse> {

 let response: ClientResult<GetBlockCountResponse> = self.inner.rpc.call(RpcApiOps::GetBlockCount, request).await;

 Ok(response.map_err(|e| e.to_string())?)

 }

 ...

Rust Ownership
& Bindings

When working with bindings, Rust ownership model
exhibits itself in unexpected ways.

If you have something in Rust, to give it elsewhere, you
have to clone the data, …or otherwise provide some
type of a reference.

If you clone the data and give it up, you no longer own
it - this creates problems with features like "getters"
and "setters" in JavaScript

Rust Ownership
& Bindings

#[wasm_bindgen]

#[derive(Clone)]

struct A {

 // 'pub' makes automatic getter on 'b'

 pub b : B;

}

#[wasm_bindgen]

#[derive(Clone)]

struct B {

 pub c : C;

}

#[wasm_bindgen]

#[derive(Clone)]

struct C {

 pub value : u32;

}

// Exposed to JavaScript

class A { b : B }

class B { c : C }

class C { value : number }

let a = new A();

a.b.c.value = 42;

console.log(a.b.c.value); // 0 :(

// a.b (clone) b.c (clone) :(

// even a.b.setCValue(42) won't help as 'b' in this example is also a clone

Rust Ownership & Bindings

#[wasm_bindgen]

#[derive(Clone)]

struct A { pub b : Arc<Mutex>; }

#[wasm_bindgen]

impl A {

 #[wasm_bindgen(getter)]

 pub fn b(&self) -> B {

 self.b.lock().unwrap().clone()

 }

}

#[wasm_bindgen]

#[derive(Clone)]

struct B { pub c : Arc<Mutex<C>>; }

// same for 'impl B'...

struct InnerC { pub value : u32; }

#[wasm_bindgen]

#[derive(Clone)]

struct C { inner : Arc<Mutex<InnerC>>; }

#[wasm_bindgen]

impl C {

 #[wasm_bindgen(getter)]

 pub fn value(&self) -> u32 {

 self.inner.lock().unwrap().value

 }

 #[wasm_bindgen(setter, js_name = value)]

 pub fn set_value(&self, value: u32) {

 self.inner.lock().unwrap().value = value;

 }

}

// In JavaScript

a.b.c.value = 42;

console.log(a.b.c.value); // 42 :)

Rusty Kaspa Node vs Client layers

CONSENSUS CLIENT TRANSACTION

/// Inner type used by [`Transaction`]

#[derive(Debug, Clone, Serialize, Deserialize)]

#[serde(rename_all = "camelCase")]

pub struct TransactionInner {

 pub version: u16,

 pub inputs: Vec<TransactionInput>,

 pub outputs: Vec<TransactionOutput>,

 pub lock_time: u64,

 pub subnetwork_id: SubnetworkId,

 pub gas: u64,

 pub payload: Vec<u8>,

 pub mass: u64,

 // A field that is used to cache the transaction ID.

 // Always use the corresponding self.id() instead of accessing this field directly

 pub id: TransactionId,

}

#[derive(Clone, Debug, Serialize, Deserialize, CastFromJs)]

#[wasm_bindgen(inspectable)]

pub struct Transaction {

 inner: Arc<Mutex<TransactionInner>>,

}

CONSENSUS TRANSACTION

/// Represents a Kaspa transaction

#[derive(Debug, Clone, PartialEq, Eq, Default, Serialize, Deserialize, BorshSerialize,

BorshDeserialize)]

#[serde(rename_all = "camelCase")]

pub struct Transaction {

 pub version: u16,

 pub inputs: Vec<TransactionInput>,

 pub outputs: Vec<TransactionOutput>,

 pub lock_time: u64,

 pub subnetwork_id: SubnetworkId,

 pub gas: u64,

 #[serde(with = "serde_bytes")]

 pub payload: Vec<u8>,

 #[serde(default)]

 mass: TransactionMass,

 // A field that is used to cache the transaction ID.

 // Always use the corresponding self.id() instead of accessing this field directly

 #[serde(with = "serde_bytes_fixed_ref")]

 id: TransactionId,

}

Rust Ownership
& Bindings

Why Arc<> and Mutex<>?

We must use async Rust in the browser environment,
which does not need to be thread safe.

At the same time, async Rust in native targets needs
to be thread safe…

🤔

Send and Sync in Rust

• Send: A type is Send if it is safe to transfer ownership of values
across threads. Essentially, it means that the type can be moved to
another thread. Most primitive types in Rust are Send by default.

• Sync: A type is Sync if it is safe for the type to be referenced from
multiple threads. A type T is Sync if &T (a reference to T) can be
shared across multiple threads. Types that are Sync allow multiple
threads to access the same reference safely.

Key Difference

• Send: Moves ownership between threads.

• Sync: Allows shared references between threads.

Send & Sync
Markers

Send & Sync
Markers

Examples Arc vs Rc

• Rc<T> (Reference Counted): Used for single-threaded scenarios. It is not Send or Sync, meaning it cannot be
shared across threads. It is used when you need shared ownership within a single thread.

• Arc<T> (Atomic Reference Counted): Safe to use across multiple threads and is both Send and Sync. It
provides thread-safe reference counting using atomic operations, allowing you to share ownership between
threads.

Rc

use std::rc::Rc;
fn main() {
 let shared_value = Rc::new(5);
 let shared_value_clone = Rc::clone(&shared_value);
 println!("Value: {}", shared_value);
 println!("Clone: {}", shared_value_clone);
 // Cannot send Rc across threads (will result in a compile-time error)
 // std::thread::spawn(move || {
 // println!("From another thread: {}", shared_value_clone);
 // }).join().unwrap();
}

Arc

use std::sync::Arc;
use std::thread;
fn main() {
 let shared_value = Arc::new(5);
 let shared_value_clone = Arc::clone(&shared_value);
 // Spawn a new thread and move the `Arc` clone into it
 let handle = thread::spawn(move || {
 println!("From another thread: {}", shared_value_clone);
 });
 // Wait for the thread to finish
 handle.join().unwrap();
 println!("Original value: {}", shared_value);
}

Rust Ownership
& Bindings

let a = A::new(); // 'a' must be Send

spawn(async move {

 a.b.c.value = 42;

 println!("{}", a.b.c.value); // 42

});

Spawning a tasks in Tokio (native executor) requires
data exchange to be `Send`.

Spawning a task in Browser (wasm_bindgen executor)
does not require data to be `Send` (JavaScript
single-threaded).

Given that our code is multi-platform, it all has to be
`Send` capable.

Data
Representation
(WASM32)

let x1 = new X();

x1 is now { // Rust Object 'X' representation

 __wbg_ptr : 1234, // Rust Memory Pointer to X

 propertyA : "hello", // getter

 propertyB : 42, // getter

}

let x2 = { // JavaScript Object 'X' repr

 propertyA : "hello", // value

 propertyB : 42, // value

};

Example of two identical objects where one is created
in Rust (WASM32 runtime) and exported to JavaScript
and the second one created in JavaScript. Now we
call:

doSomething(x1);

doSomething(x2);

Data Representation (WASM32)

impl TryCastFromJs for TransactionInput {

 type Error = Error;

 fn try_cast_from<'a, R>(value: &'a R) -> std::result::Result<Cast<Self>, Self::Error>

 where

 R: AsRef<JsValue> + 'a,

 {

 Self::resolve_cast(value, || { // <- first, pass to resolve_cast to check for Rust type

 if let Some(object) = Object::try_from(value.as_ref()) {

 let previous_outpoint: TransactionOutpoint = object.get_value("previousOutpoint")?.as_ref().try_into()?;

 let signature_script = object.get_vec_u8("signatureScript").ok();

 let sequence = object.get_u64("sequence")?;

 let sig_op_count = object.get_u8("sigOpCount")?;

 let utxo = object.try_cast_into::<UtxoEntryReference>("utxo")?;

 Ok(TransactionInput::new(previous_outpoint, signature_script, sequence, sig_op_count, utxo).into())

 } else {

 Err("TransactionInput must be an object".into())

 }

 })

 }

}

WASM32 bindings

wasm-bindgen
web-sys
js-sys

wasm-bindgen

● Provides binding automation for various
primitives including structs and functions.

● Handles type conversions + allows custom
TypeScript type declarations

web-sys

● Provides access to all Browser JavaScript APIs

js-sys

● Provides access to JavaScript primitives
(JsObject, Array, Number, Map etc.)

Multi-platform
layer

workflow-rs

workflow-rs

● General-purpose crate developed for
multi-platform applications.

● This adventure started due to lack of
WASM32-compatible async WebSockets (there
was literally nothing at the time in the browser
environment - now still not much but the
ecosystem is gradually evolving)

● Provides framework abstractions that function
uniformly in all target environments

● Supports native, WASM32 (browser, nodejs, bun,
deno, electron, NWJS + Browser Extension
environments)

By restricting SDK I/O to this crate, this compatibility is
projected on the Rusty Kaspa SDK.

workflow-core

● async Rust toolkit: (spawn(), sleep(), intervals,
timeouts

● Timer proxying via background workers in
browsers (inactive tab handling)

● File I/O (native, NodeJS 'fs' module,
localStorage, chromeStorage)

● 'runtime' tools (target platform/runtime
identification)

● dirs (home and data folder resolution)

Everything we ever needed for general-purpose
application development went in this or the
accompanying crates.

Multi-platform
layer

workflow-rs

workflow-log

● Just logging…
○ stdio in native
○ console (log/warn/err) in WASM32

workflow-wasm

● General purpose JS utilities
● JsValue & JsObject extensions
● Callback handling
● Panic handling (browser & node hooks)
● TryCast (TryCastFromJs trait)

workflow-serializer

● High-performance binary serialization based on
Borsh (auxiliary serialization traits and macros)

workflow-dom

● DOM injection utilities, loading JS scripts via Blobs

Multi-platform
layer

workflow-rs

workflow-websocket

Foundational layer for WebSocket I/O - provides the
WebSocket struct (class) that functions in all
above-mentioned targets.

On the backend:

WASM32

● W3C-compatible WebSockets

Native

● Tungstenite (tokio-tungstenite)

… it is fascinating how months of work and refactoring
can be summarized into a single presentation with two
key points …

Multi-platform
layer

workflow-rs

workflow-rpc

Foundational layer base on workflow-websocket crate
for RPC management.

● Request
● Response
● Notifications

Similar to JSON RPC in structure (but
websocket-framed).

Supports 2 encodings:

● Borsh (high-performance binary encoding)
● JSON (serde-json)

JSON encoding is similar to JSON RPC but uses large
integers (not directly deserializable in JavaScript).

Multi-platform
layer

workflow-rs

workflow-rpc

Rust implementation is meant for IPC-based
functionality.

The methodology is to ensure that an RPC method call
is a simple async function call. The application should
not know that it is connected to RPC.

The goal is to provide a single set of Rust data
structures available in the server and client allowing
RPC layer to become a transparent.

Multi-platform
layer

workflow-rs

Kaspa RPC RpcApi trait

● Central trait declaring all RPC methods including
their Request and Response data structures.

● To implement a server or a client, one simply
needs to implement the RpcApi trait.

● Doesn't have to be RPC (KNG can use the trait
directly by spinning up Rusty Kaspa daemon as
a thread and latching onto the
`RpcCoreServices` as a trait - in KNG this is
known as "Integrated Node" mode where Rusty
Kaspa and Kaspa NG run in a single process).

Kaspa gRPC kaspa-grpc-client

Standard approach, primarily focused on server-side
interfacing using gRPC .proto protocol definitions.

Provides conversions between messages defined in
.proto definitions and Rusty Kaspa RPC
Request/Response data structures.

gRPC is compatible with the legacy Golang Node and
on it's own, gRPC has a huge client adoption.

Unfortunately, no ability to easily connect from web
browsers.

Kaspa wRPC workflow-rpc/client -> kaspa-wrpc-client

wRPC is based on workflow-rpc

● Native to Rust / Rusty Kaspa
● Native + WASM32-compatible client
● Compatible with bindings (Python etc.)

wRPC currently powers the majority of the Kaspa web
application ecosystem.

Kaspa wRPC
Resolver

Kaspa Resolver (application)

A simple high-availability load-balancer (v2).

Resolver is comprised of 2 primary components:

● wRPC client that connects to multiple wRPC
endpoints and monitors connection health, node
sync state and connection load.

● HTTP server for querying available wRPC
endpoints.

Support for Resolver is integrated in wRPC client
where if enabled it polls a resolver on each
connection.

Public Node
Network (PNN)
initiative

Public Node Network is a contributor-maintained
network of resolvers and Rusty Kaspa nodes.

Primary goals:

● Provide developers with quick on-ramp for
testing APIs and integration.

● Provide backend support for application
developers who do not have
ability/infrastructure to run their own nodes.

● Provide infrastructure developers with an
out-of-the-box high-availability clustering
solution (automatic node failover within a
cluster)

SDK & Rusty Kaspa
Components

Wallet SDK

Consensus
Engine

Consensus
Engine

Core
Service Management

Client
Consensus

RPC Core RPC Core

p2p RPC

RpcCoreServices
Main external interface to all internal services

wRPC Server gRPC Server

Rusty Kaspa Daemon (kaspad)

gRPC ClientwRPC Client

Framework Primitives
Address, TxScript, Consensus Params, etc.

Utils + Key
ManagementWallet SDKWallet API

Rust SDK

Dedicated Bindings

WASM32 SDKPython SDK

In
-p

la
ce

 a
nd

 d
ed

ic
at

ed
 b

in
di

ng
s

Key Logical Components
of the Rusty Kaspa framework.

Transaction ProcessingBlock Processing

Header
Processing

Block Acceptance
Validation

Consensus Engine (Bird's-eye view)

Body
Processing

Virtual Chain
Processing

p2p

Block processing parallelism Transaction processing parallelism

RPC

Co
ns

en
su

s
Pr

oc
es

so
r

UtxoProcessor

Context Management

Wallet SDK - Key Logical Components

UtxoContextA

UtxoContextB

UtxoContextC

Event Processing

Node

Service Task

Ev
en

t C
on

su
m

er
(T

ra
ns

ac
tio

n
N

ot
ifi

ca
tio

ns
)

U
TX

O
 C

ha
ng

es

D
AA

 S
co

re

TX State
Updates

PK
I,

Ad
dr

es
s,

 D
er

iv
at

io
n

M
an

ag
em

en
t F

ra
m

ew
or

k
se

cp
25

6k
1

• B
IP

32
 •

BI
P3

9
• B

IP
44

Transaction Generator

U
TX

O
 In

pu
ts

Output - [batch]

Pending TXA

Pending TXB

Pending TXC

Submit

Node

Local "outgoing" notifications
zero-conf account-transfers etc.

OUTGOING

INCOMING
(PENDING)

Tr
an

sa
ct

io
n

Ev
en

t G
en

er
at

io
n

Transaction Generation

INPUT MASS ACCUMULATOR

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 83 KAS (-fees)

Transaction

Transaction mass limit is 100,000.
For standard inputs & outputs this denotes 83 inputs + 1 output.

Transaction Mass Limits

Inputs (UTXOs)

Outputs (UTXO wannabes)

83 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

100 (83 + 17) (-fees)

Sweeping
a.k.a. Compounding

a.k.a. Batching

Receiver

B

A

C

Parallel Transaction Processing

Unrelated transactions will
process in parallel.

Transactions A and B will process
in parallel within 1 DAA score.

Transaction C will process on the
next DAA score.

Total cost is ~2 DAA.

1 DAA 1 DAA

Wallet

Wallet API - Key Logical Components

AccountA

AccountB

AccountC

UtxoProcessor

Node

Wallet Event Consumer
(Transaction Notifications)

Transaction Event Generation Serializable Control Interface

Wallet Control

Tr
an

sa
ct

io
n

St
or

ag
e

In
te

rf
ac

e

IndexDB

localStorage

chromeStorage

File I/O

Connected,
Incoming Transaction,

Balance Update,
etc.

Open, Get Account Info,
Send, Transaction
History, Close,
etc..

Platform-specific
storage backends

Native & NodeJs

Browser Extension
(no localStorage)

Browser WebApp

Browser WebApp & Extension

Ba
ck

ed
 b

y
U

tx
oC

on
te

xt
s

Rust

Automatically generated by RustDoc

WASM32

wasm-pack converts RustDoc to TypeScript, we then
run TypeDoc on top of that to get TypeDoc
documentation.

Python

TBD

Documentation

TypeScript "typings"...

While Rust ensures type integrity, it is very difficult to
track all potential mistakes as type linkage breaks
between Rust and TypeScript.

Recent Example:

`Address::setPrefix` was tagged as a setter :/

Solution to this is to have full test coverage in
TypeScript, but this is very demanding.

Challenges

Challenges
General TypeScript type acrobatics for complex functions…

export type RpcEventMap = {

 "connect" : undefined,

 "disconnect" : undefined,

 "block-added" : IBlockAdded,

 "virtual-chain-changed" : IVirtualChainChanged,

...

export type RpcEvent = {

 [K in keyof RpcEventMap]: { event: K, data: RpcEventMap[K] }

}[keyof RpcEventMap];

...

export type RpcEventCallback = (event: RpcEvent) => void;

...

interface RpcClient {

 addEventListener(callback:RpcEventCallback): void;

 addEventListener<M extends keyof RpcEventMap>(

 event: M,

 callback: (eventData: RpcEventMap[M]) => void

)

}

...

#[wasm_bindgen(js_name = "addEventListener", skip_typescript)]

pub fn add_event_listener(&self, event: RpcEventTypeOrCallback, callback:

Option<RpcEventCallback>) -> Result<()> {

...

Outstanding Work ● RPC Pagination

Tolerable due to mainnet decentralization

● Python SDK release

In final stages

● PSKT WASM bindings

In final stages

Case study

Kaspa NG

● Runs as a Native app on Windows, Linux, MacOS (embeds Rusty
Kaspa p2p Node) - functions similar to Bitcoin Core.

● Runs as a Web application (WASM32) in a browser, accessible on
mobile devices.

● Runs as a Web Extension.

● Runs as a command line (cli) wallet by embedding Rusty Kaspa CLI
wallet crate (Windows requires 2 binaries for in terminal use).

Uses EGUI (https://egui.rs) to provide platform-neutral UX powered by OpenGL
(glow) and WebGPU.

Resources

Rusty Kaspa - https://github.com/kaspanet/rusty-kaspa

Kaspa Integration Guide - https://kaspa.aspectron.org

Kaspa NG - https://kaspa-ng.org

workflow-rs - https://github.com/workflow-rs/workflow-rs

https://github.com/kaspanet/rusty-kaspa
https://kaspa.aspectron.org
https://kaspa-ng.org
https://github.com/workflow-rs/workflow-rs

